Про деток, от рождения до школы

Это система каналов и полостей, стенки которых состоят из одного слоя мембраны. Строение мембраны аналогично плазмалемме (жидкостно-мозаичное), однако входящие сюда липиды и белки несколько отличаются по химической организации. Различают два типа ЭПС: шероховатую (гранулярная) и гладкую (агранулярная).

ЭПС обладает несколькими функциями.

  1. Транспортная.
  2. Мембранообразующая.
  3. Синтезирует белок, жиры, углеводы и стероидные гормоны.
  4. Обезвреживает токсические вещества.
  5. Депонирует кальций.

На внешней поверхности мембраны шероховатой ЭПС происходит синтез белка.

2. На мембране гладкой ЭПС располагаются ферменты которые синтезируют жиры, углеводы и стероидные гормоны.

3. На мембране гладкой ЭПС располагаются ферменты, которые обезвреживают токсические чужеродные вещества попавшие в клетку.

Шероховатая содержит на внешней стороне матрикса мембраны большое число рибосом, которые участвуют в синтезе белка. Синтезированный на рибосоме белок через специальный канал попадает в полость ЭПС (рис. 7) и оттуда разносится в различные части цитоплазмы (в основном он попадает в комплекс Гольджи). Это характерно для белков, идущих на экспорт . Например, для пищеварительных ферментов, синтезируемых в клетках поджелудочной железы.

Рибосома иРНК

Рис. 7. Эндоплазматическая сеть:

А – фрагменты гладкой ЭПС; Б – фрагменты шероховатой ЭПС. В – функционирующая рибосома на шероховатой ЭПС.

В мембране гладкой ЭПС имеется набор ферментов, синтезирующих жиры и простые углеводы, а также стероидные гормоны, необходимые для организма. Особо следует отметить, что в мембране гладкой ЭПС клеток печени располагается система ферментов, осуществляющих расщепление чужеродных веществ (ксенобиотиков), попавших в клетку, в том числе и лекарственных соединений. Система состоит из разнообразных белков-ферментов (окислителей, восстановителей, ацетиляторов и др.).

Ксенобиотик или лекарственное вещество (ЛВ), взаимодействуя последовательно с определёнными ферментами, изменяет свою химическую структуру. В результате конечный продукт может сохранить свою специфическую активность, может стать неактивным или, наоборот, приобрести новое свойство – стать токсичным для организма. Система ферментов, расположенная в ЭПС и осуществляющая химическое преобразование ксенобиотиков (или ЛВ), носит название система биотрансформации. В настоящее время этой системе придают большое значение, т.к. от интенсивности её работы и количественного содержания в ней тех или иных ферментов зависит специфическая активность ЛВ (бактерицидность и т.п.) в организме и их токсичность.



Изучая содержание в крови противотуберкулёзного вещества изониазида, исследователи столкнулись с неожиданным явлением. При приёме одинаковой дозы препарата его концентрация в плазме крови у разных индивидуумов оказалась неодинаковой. Выяснилось, что у людей с интенсивным процессом биотрансформации изониазид быстро ацетилируется, превращаясь в другое соединение. Поэтому его содержание в крови становится значительно меньше, чем у индивидуумов с низкой интенсивностью ацетилирования. Логично сделать вывод, что пациентам с быстрым ацетилированием, для эффективного лечения, необходимо назначать более высокие дозы препарата. Однако возникает другая опасность, при ацетилировании изониазида образуются токсичные для печени соединения. Поэтому повышение дозы изониазида у быстрых ацетиляторов может обернуться поражением печени. Вот такие парадоксы постоянно встречаются на пути фармакологов при изучении механизма действия препаратов и систем биотрансформации. Поэтому один из важных вопросов, которые должен решить фармаколог – рекомендовать для внедрения в практику такое ЛВ, которое не подвергалось бы быстрому инактивированию в системе биотрансформации и, тем более, не превращалось бы в токсическое для организма соединение. Известно, что из рекомендованных в настоящее время Фармкомитетом ЛВ практически все подвергаются процессам биотрансформации. Однако ни одно из них полностью не теряет своей специфической активности и не наносит существенного вреда организму. Такие вещества, как атропин, левомицетин, преднизолон, норадреналин и множество других полностью сохраняют свои свойства, но проходя через систему биотрансформации, становятся более растворимы в воде. Значит, они достаточно быстро будут выводиться из организма. Есть вещества, которые активируют систему биотрансформации, например, фенобарбитал. Так, в проводимых на мышах экспериментах выяснили, что при попадании в кровоток большого количества этого вещества в клетках печени поверхность гладкой ЭПС за несколько дней удваивается. Стимуляцию системы биотрансформации используют для нейтрализации токсических соединений в организме. Так, фенобарбитал используется при лечении гемолитической болезни новорождённых, когда стимуляция систем биотрансформации помогает организму справиться с избытком вредных веществ, например, билирубином. Кстати, после удаления вредного вещества избыток мембран гладкой ЭПС разрушается с помощью лизосом, и через 5 дней сеть приобретает нормальный объем.

Синтезированные в мембранах ЭПС вещества по каналам доставляются к различным органоидам или в места, где они необходимы (рис. 8). Транспортная роль ЭПС этим не ограничивается, в некоторых участках мембрана способна образовывать выпячивания, которые перешнуровываются и отрываются от мембраны, формируя пузырёк, в котором содержатся все ингредиенты канальца сети. Этот пузырёк способен перемещаться и опорожнять своё содержимое в самых различных местах клетки, в частности сливаться с комплексом Гольджи.

Шероховатая ЭПС Элементы цитоскелета


Рибосома

Митохондрии

Ядро Клетка

Рис. 8. Схематическое изображение внутренней части клетки (масштабы не соблюдены).

Необходимо отметить важную роль ЭПС в строительстве всех внутриклеточных мембран. Здесь начинается самый первый этап такого строительства.

Существенную роль играет ЭПС и в обмене ионов кальция. Этот ион имеет большое значение в регуляции клеточного метаболизма, изменяя проницаемость мембранных каналов, активируя различные соединения в цитоплазме и т.д. Гладкая ЭПС является депо ионов кальция. При необходимости кальций высвобождается и принимает участие в жизнедеятельности клетки. Эта функция более всего свойственна ЭПС мышц. Освобождение ионов кальция из ЭПС является звеном в сложном процессе сокращения мышцы.

Необходимо отметить тесную связь ЭПС с митохондриями - энергетическими станциями клетки. При заболеваниях, связанных с энергодифецитом, рибосомы отсоединяются от мембраны шероховатой ЭПС. Последствия не трудно предсказать – нарушается синтез белков на экспорт. А поскольку к таким белкам относятся пищеварительные ферменты, то при заболеваниях, связанных с энергодифецитом, будет нарушена работа пищеварительных желёз и, как следствие, пострадает одна из основных функций организма – пищеварительная. Исходя из этого, должна вырабатываться и фармакологическая тактика врача.

Комплекс Гольджи

В железах внутренней секреции, например, в поджелудочной железе, некоторые пузырьки, отделяясь от ЭПС, уплощаются, сливаются с другими пузырьками, накладываются друг на друга, как блины в стопке, образуя комплекс Гольджи (КГ). Состоит он из нескольких структурных элементов – цистерн, пузырьков и трубочек (рис. 9). Все эти элементы образованы однослойной мембраной жидкостно-мозаичного типа. В цистернах происходит «созревание» содержимого пузырьков. Последние отшнуровываются от комплекса и передвигаются в цитозоле по микротрубочкам, фибриллам и филаментам. Однако основной путь пузырьков – движение к плазматической мембране. Сливаясь с ней, пузырьки опорожняют своё содержимое с пищеварительными ферментами в межклеточное пространство (рис. 10). Из него ферменты попадают в проток и изливаются в кишечник. Процесс выведения при помощи пузырьков секрета КГ носит название экзоцитоз.

1

Рис. 9. Срез комплекса Гольджи: 1 – ядро; 2 – ядрышко; 3 – пузырьки, образующиеся в КГ; 4 – цистерны КГ; 5 – трубочка.

Мембрана


Рис. 10. Формирование цистерн КГ(г) из пузырьков:

1 – ядро; 2 – ядрышко; 3 – пузырьки, образующиеся в КТ; 4 – цистерны КГ; 5 – трубочка.

Следует отметить, что экзоцитоз в клетке часто совмещён с другим важным клеточным процессом – строительством или обновлением плазматической мембраны. Суть его в том, что пузырёк, состоящий из однослойной жидкостно-мозаичной мембраны, подойдя к мембране, разрывается, разрывая одновременно и мембрану. После выхода содержимого пузырька его края сливаются с краями бреши в мембране, и разрыв «затягивается». Другой путь характерен для пузырьков, из которых в дальнейшем формируются лизосомы. Эти пузырьки, перемещаясь по направляющим филаментам, распределяются по всей цитоплазме клетки.

Практически в КГ происходит перераспределение белков, синтезированных на рибосомах шероховатой ЭПС и доставленной по каналам ЭПС в КГ, часть из них идёт из КГ на экспорт, часть остаётся для нужд клетки (например, концентрируется в лизосомах). Процесс точного распределения белков имеет сложный механизм, и при его сбоях могут пострадать не только функции пищеварения, но и все функции, связанные с лизосомами. Некоторые авторы очень точно подметили, что КГ в клетке является «центральным железнодорожным вокзалом», где происходит перераспределение потока пассажиров-белков.

Некоторые микротрубочки слепо заканчиваются.

В КГ осуществляется модификация продуктов, поступающих из ЭПС:

1. Накопление поступающих продуктов.

2. Обезвоживание их.

3. Необходимая химическая перестройка (созревание).

Ранее мы отмечали, что в КГ происходит формирование пищеварительных секретов и лизосом. Кроме этих функций, в органоиде синтезируются полисахариды и одни из основных участников иммунных реакций в организме - иммуноглобулины.

И, наконец, КГ принимает активное участие в построении и обновлении плазматической мембран. Изливаясь через плазмалемму, пузырьки способны интегрировать в неё свою мембрану. Для строительства мембран используются вещества (рис. 11), синтезированные в ЭПС и "созревшие" на мембранах цистерн КГ.

Экзоцитоз и образование

Мембраны клетки из

Мембраны пузырька.


Ядро клетки

Комплекс Гольджи

Рис. 11 Схема формирования фрагмента плазматической мембраны из мембраны пузырька КГ (масштабы не соблюдены).

Функция КГ:

· транспортная (образовавшиеся пузырьки транспортируют ферменты наружу или для собственного использования),

· формирует лизосомы,

· образующая (в КГ образуются иммуноглобулины, сложные сахара, мукопротеиды и т.д.),

· строительная: а) мембрана пузырьков КГ может встраиваться в плазматическую мембрану; б) на строительство мембран клетки идут соединения, синтезированные в мембране цистерн,

· разделительную (делит клетку на отсеки).

Лизосомы

Лизосомы имеют вид небольших округлых пузырьков, встречаются во всех частях цитоплазмы, от которой отделены однослойной мембраной жидкостно-мозаичного типа. Внутреннее содержимое однородно и состоит из большого количества самых разнообразных веществ. Наиболее значимые из них – ферменты (около 40 - 60), расщепляют практически все природные полимерные органические соединения, попавшие внутрь лизосом. Внутри лизосом рН 4,5 - 5,0. При таких значениях ферменты находятся в активном состоянии. Если же рН близка к нейтральной, характерной для цитоплазмы, эти ферменты обладают низкой активностью. Это один из механизмов защиты клеток от самопереваривания в том случае, если ферменты попадают в цитоплазму, например, при разрыве лизосом. На внешней стороне мембраны имеется большое количество самых разнообразных рецепторов, которые способствуют соединению лизосом с эндоцитозными пузырьками. Следует отметить важное свойство лизосом – целенаправленное движение в сторону объекта действия. Когда происходит фагоцитоз, лизосомы двигаются в сторону фагосом. Отмечено их движение к разрушенным органоидам (например, митохондриям). Как мы писали ранее, направленное движение лизосом осуществляется с помощью микротрубочек. Разрушение микротрубочек приводит к прекращению образования фаголизосом. Фагоцит практически теряет способность переваривать болезнетворные микроорганизмы, находящиеся в крови (фагоцитоз). Это приводит к тяжёлому течению инфекционных заболеваний.

В определённых условиях мембрана лизосом способна пропускать внутрь высокомолекулярные органические вещества гиалоплазмы (например, белки, липиды, полисахариды) (рис. 12. (4,4а), где они расщепляются до элементарных органических соединений (аминокислоты, моносахара, жирные кислоты, глицерин). Затем эти соединения выходят из лизосом и идут на нужды клетки. В некоторых случаях лизосомы могут «захватить», а затем «переварить» осколки органоидов (рис. 12. (3,3а)) и повреждённые или устаревшие компоненты клетки (мембраны, включения). При голодании жизнедеятельность клеток поддерживается за счёт переваривания в лизосомах части цитоплазматических структур и использования конечных продуктов. Такое эндогенное питание характерно для многих многоклеточных.

Образующиеся в процессе эндоцитоза (фагоцитоз и пиноцитоз) эндоцитозные пузырьки – пиноцитозные пузырьки (рис. 12. (1,1а) и фагосомы (рис. 12. (2,2а)) – также сливаются с лизосомой, формируя фаголизосому. Их внутреннее содержимое – микроорганизмы, органические вещества и т.д. расщепляются ферментами лизосом до элементар-

Микроорганизмы


Растворённые

Органические 2 3

Вещества


Белки, жиры Лизосома Фрагменты

углеводы митохондрий

Рис. 12. Функции лизосом:

1, 1а – утилизация органических веществ гиалоплазмы; 2, 2а – утилизация содержимого пиноцитозных пузырьков; 3, 3а – утилизация содержимого фагоцитозных пузырьков; 4, 4а – ферментативное расщепление поврежденных митохондрий. 3а – фагосомы.

ных органических соединений, которые после выхода в цитоплазму становятся участниками клеточного метаболизма. Переваривание биогенных макромолекул внутри лизосом может идти в ряде клеток не до конца. В этом случае в полости лизосомы накапливаются непереваренные продукты. Такая лизосома называется остаточным тельцем. Там же откладываются пигментные вещества. У человека при старении организма в остаточных тельцах клеток мозга, печени и в мышечных волокнах накапливается "пигмент старения" - липофусцин.

Если вышесказанное можно условно охарактеризовать как действие лизосом на уровне клетки, то другая сторона деятельности этих органоидов проявляется на уровне целого организма, его систем и органов. Прежде всего это касается удаления отмирающих в процессе эмбриогенеза органов (например хвост у головастика), при дифференцировке клеток некоторых тканей (замена хряща костью) и т.д.

Учитывая большое значение ферментов лизосом в жизнедеятельности клетки, можно предположить, что любые нарушения их работы могут привести к тяжёлым последствиям. При повреждении гена, контролирующего синтез какого-либо фермента лизосом, у последнего произойдёт нарушение структуры. Это приведёт к тому, что в лизосомах будут накапливаться «непереваренные» продукты. Если в клетке таких лизосом становится слишком много, клетка повреждается и как результат нарушается работа соответствующих органов. Наследственные болезни, развивающиеся по такому сценарию, носят название «лизосомные болезни накопления».

Следует обратить внимание также на участие лизосом в формировании иммунного статуса организма (рис 13). Попадая в организм, антиген (например, токсин микроорганизма) в основном (около 90%) разрушается, что предохраняет клетки от его повреждающего действия. Оставшиеся в крови молекулы антигена поглощаются (пиноцитозом или фагоцитозом) макрофагами или специальными клетками с развитой лизосомальной сис

Бактерия


Антиген

Макрофаг

пинозитоза



Пиноцитозный


Лизосома

Пептидные фрагменты антигена

Рис. 13. Формирование в макрофаге пептидных фрагментов антигена

(масштабы не соблюдены).

темой. Пиноцитозный пузырёк или фагосома с антигеном соединяется с лизосомой и ферменты последней, расщепляют антиген на фрагменты, которые обладают большей антигенной активностью и меньшей токсичностью, чем первоначальный микробный антиген. Эти фрагменты в большом количестве выносятся на поверхность клеток, и происходит мощная активация иммунных систем организма. Понятно, что усиление антигенных свойств (на фоне отсутствия токсического эффекта), в результате лизосомальной обработки, значительно ускорит процесс развития защитных иммунных реакций на этот микроорганизм. Процесс расщепления лизосомами антигена на пептидные фрагменты носит название процессинг антигена . Необходимо отметить, что непосредственное участие в этом явлении принимают ЭПС и комплекс Гольджи.

И, наконец, в последнее время широко рассматривается вопрос взаимоотношения лизосом и микроорганизмов, фагоцитированных клеткой. Как мы излагали ранее, слияние фагосомы и лизосомы приводит к перевариванию микроорганизмов в фаголизосоме. Это наиболее благоприятный исход. Однако возможны и другие варианты взаимоотношений. Так, некоторые патогенные (болезнетворные) микроорганизмы при проникновении в клетку внутри фагосомы выделяют вещества, блокирующие слияние лизосом с фагосомой. Это даёт возможность сохраниться им в фагосомах. Однако срок жизни клеток (фагоцитов) с поглощёнными микроорганизмами невелик, они распадаются, выбрасывая в кровь фагосомы с микробами. Вышедшие в кровеносное русло микроорганизмы способны вновь спровоцировать рецидив (возврат) заболевания. Возможен и другой вариант, когда части разрушенного фагоцита, в том числе и фагосомы с микробами, вновь поглощаются другими фагоцитами, снова оставаясь в живом состоянии и в новой клетке. Цикл может повторяться достаточно длительное время. Описан случай заболевания сыпным тифом у пожилого пациента, который ещё юношей-красноармейцем перенёс сыпной тиф, сражаясь в Первой конной армии. Через пятьдесят с лишним лет повторились не только симптомы заболевания – даже бредовые видения возвращали старика в эпоху гражданской войны. Всё дело в том, что возбудители сыпного тифа обладают способностью блокировать процесс соединения фагосом и лизосом.

Функция лизосом:

· пищеварительная (переваривая части цитоплазмы и микроорганизмы, поставляет элементарные органические соединения для нужд клетки),

· утилизационная (очищает цитоплазму от распавшихся частей),

· участвуют в удалении отмирающих клеток и органов,

· защитная (переваривание микроорганизмов, участие в иммунных реакциях организма).

Рибосомы.

Это аппарат синтеза белка в клетке. В рибосому входят две субъединицы – большая и малая. Субъединицы имеют сложную конфигурацию (см. рис. 14) и состоят из белков и рибосомальной РНК (рРНК). Рибосомальная РНК служит своеобразным каркасом, на который крепятся молекулы белка.

Образование рибосом происходит в ядрышке ядра клетки (этот процесс будет рассмотрен ниже). Сформированные большая и малая субъединица выходят через ядерные поры в цитоплазму.

В цитоплазме рибосомы находятся в диссоциированном или диспергированном состоянии, это диссоциированные рибосомы . В таком состоянии они не способны прикрепиться к мембране. Это не рабочее состояние рибосомы. В рабочем состоянии рибосома представляет собой органоид, состоящий из двух скрепленных между собой субъединиц, между которыми проходит нить иРНК. Такие рибосомы могут свободно «плавать» в цитозоле, они называются свободные рибосомы , или прикрепляться к различным мембранам,


А Б В Г

Рис. 14. Естественная форма малой (А) и большой (Б) субъединицы рибосомы. Целая рибосома (В). Схематическое изображение рибосомы (Г)

например к мембране ЭПС. На мембране рибосома чаще всего располагается не в одиночку, а ансамблем. В ансамбле может быть разное количество рибосом, но все они соединены одной нитью иРНК. Это делает работу рибосом очень эффективной. В то время как очередная рибосома заканчивает синтез белка и сходит с иРНК, другие этот синтез продолжают, находясь в различных местах молекулы РНК. Ансамбль таких рибосом на
зывается полисомой (рис. 15).

Окончание синтеза белка Начало синтеза белка

Рис. 15. Схема синтеза белка полисомой.

На рисунке полисома состоит из пяти разных рибосом.

Обычно на мембранах шероховатой ЭПС синтезируются белки на экспорт, а в гиалоплазме – на нужды клетки. Если при заболевании обнаруживается отсоединение рибосом от мембран и переход их в гиалоплазму, то это можно рассматривать как защитную реакцию – с одной стороны, клетки сокращают экспорт белка и увеличивает синтез белка на внутренние нужды. С другой стороны, такое отсоединение рибосом свидетельствует о наступающем энергодифеците клетки, так как прикрепление и удержание рибосом на мембранах требует затраты энергии, основным поставщиком которой в клетке является АТФ. Недостаток АТФ закономерно приводит не только к отсоединению рибосом от мембраны, но и неспособности свободных рибосом прикрепиться к мембране. Это приводит к выключению из молекулярного хозяйства клетки эффективного генератора белка – шероховатой ЭПС. Считается, что энергодефицит – это серьёзное нарушение клеточного метаболизма, чаще всего связанное с нарушением в деятельности энергозависимых процессов (например в митохондриях).

В рибосоме имеются три различных участка, с которыми связывается РНК - один для матричной, или информационной РНК (мРНК, или иРНК), и два для транспортной РНК. Первый располагается в месте контакта большой и малой субъединицы. Из двух последних - один участок удерживает молекулу тРНК и формирует связи между аминокислотами (пептидные связи), поэтому его называют Р-центр. Он располагается в малой субъединице. А второй служит для удержания только что прибывшей молекулы тРНК, нагруженной аминокислотой. Его называют А-центром.

Следует подчеркнуть, что при синтезе белка некоторые антибиотики могут блокировать этот процесс (подробнее на этом мы остановимся, когда будем описывать трансляцию).

Митохондрии.

Их называют «энергетическими станциями клетки». У эукариот в процессе гликолиза, цикла Кребса и других биохимических реакций формируется большое количество электронов и протонов. Часть из них участвует в разнообразных биохимических реакциях, другая часть аккумулируется в специальных соединениях. Их несколько. Наиболее важные из них НАДН и НАДФН (никотинамидадениндинуклеотид и никатинамидадениндинуклеотид-фосфат). Эти соединения в форме НАД и НАДФ являются акцепторами – своеобразными «ловушками» электронов и протонов. После присоединения к ним электронов и протонов они превращаются в НАДН и НАДФН и являются уже донорами элементарных частиц. «Отлавливая» их в самых различных частях клетки, они переносят частицы в различные отделы цитоплазмы и, отдавая их на нужды биохимических реакций, обеспечивают бесперебойное течение метаболизма. Эти же соединения поставляют электроны и протоны в митохондрии из цитоплазмы и из матрикса митохондрий, где располагается мощный генератор элементарных частиц – цикл Кребса. НАДН и НАДФН, встраиваясь в цепь переноса электронов (см. далее), передают частицы на синтез АТФ. Из АТФ энергия черпается на все процессы, идущие в клетке с затратой энергии.

Митохондрии имеют две мембраны жидкостно-мозаичного типа. Между ними располагается межмембранное пространство. Внутренняя мембрана имеет складки – кристы (рис. 16). Внутренняя поверхность крист усеяна грибовидными тельцами, имеющими ножку и головку.

В грибовидных тельцах происходит синтез АТФ. В самой толще внутренней мембраны митохондрий располагаются ферментные комплексы, переносящие электроны с НАДН 2 на кислород. Эти комплексы называютсядыхательной цепью или цепью пере-

Рибосома

А Б С


Кольцевая ДНК

Рис. 16. Митохондрии:

А – Общая схема организации митохондрий. Б – участок кристы с грибовидными телами:

1 – наружная мембрана митохондрий; 2 – межмембранный матрикс; 3 – внутренняя мембрана; 4 – матрикс; 5 – криста; 6 – грибовидные тельца.

носа электронов. За счёт движенияэ лектронов по этому комплексу происходит синтез АТФ. АТФ является главным поставщиком энергии для всех клеточных процессов. Митохондрии являются главными потребителями кислорода в организме. Поэтому в первую очередь на недостаток кислорода реагируют митохондрии. Реакция эта однозначна –недостаток кислорода (гипоксия) приводит к набуханию митохондрий, в дальнейшем клетки повреждаются и отмирают.

Различные типы эукариотических клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Содержание органелл в клетке колеблется в пределах 500 – 2000, в зависимости от потребности в энергии. Так активно работающие клетки кишечного эпителия содержат много митохондрий, а в сперматозоидах они формируют сеть, обвивающую жгутик, обеспечивая его энергией для движения. В тканях с высоким уровнем окислительных процессов, например в сердечной мышце количество крист во много раз больше, чем в обычных клетках. В митохондриях сердечной мышцы число их в 3 раза больше, чем в митохондриях печени.

Жизнь митохондрий измеряется днями (5 – 20 дней в различных клетках). Устаревшие митохондрии гибнут, распадаются на фрагменты и утилизируются лизосомами. Взамен формируются новые, которые появляются в результате деления имеющихся митохондрий.

Обычно в матриксе митохондрий располагаются 2 – 10 молекул ДНК. Это кольцевые структуры, кодирующие митохондральные белки. В митохондриях имеется весь аппарат синтеза белка (рибосомы, иРНК, тРНК, аминокислоты, ферменты транскрипции и трансляции). Поэтому в митохондриях осуществляются процессы репликации, транскрипции и трансляции, происходит созревание иРНК – процессинг. Исходя из этого, митохондрии являются полуавтономными единицами.

Существенным моментом в деятельности митохондрий является синтез в них стероидных гормонов и некоторых аминокислот (глутаминовой). Устаревшие митохондрии могут выполнять депонирующую функцию – накапливать продукты экскреции или аккумулировать вредные вещества, попавшие в клетку. Понятно, что в этих случаях митохондрия перестаёт выполнять свою основную функцию.

Функции митохондрий:

· накопление энергии в форме АТФ,

· депонирующая,

· синтетическая (синтез белков, гормонов, аминокислот).

В области нексуса (длиной 0,5 – 3 мкм) плазмолеммы сближаются на расстояние 2 нм и пронизываются многочисленными белковыми каналами (коннексонами), связывающими содержимое соседних клеток. Через эти каналы (диаметром 2 нм) могут диффундировать ионы и небольшие молекулы. Характерно для мышечных тканей.

Синапсы - это области передачи сигнала от одной возбудимой клетки другой. В синапсе различают пресинаптическую мембрану (принадлежащую одной клетке),синаптическующель и постсинаптическую мембрану (ПоМ) (часть плазмолеммы другой клетки). Обычно сигнал передаётся химическим веществом - медиатором, воздействующим на специфические рецепторы в ПоМ. Характерны для нервной ткани.

Мембранных органеллы:

Эндоплазматическая сеть (ЭПС) - впервые в эндоплазме фибробласта обнаружил Портер, делится на два типа - гранулярную и агранулярную (или гладкую).

Гранулярная ЭПС представляет собой совокупность плоских мешков (цистерн), вакуолей и трубочек, со стороны гиалоплазмы мембранная сеть покрыта рибосомами. В связи с этим, иногда используют другой термин - шероховатый ретикулум. На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

Функции гранулярной ЭПС :

1) синтез на рибосомах пептидных цепей экспортируемых, мембранных, лизосомных и т.п. белков,

2) изоляция этих белков от гиалоплазмы внутри мембранных полостей и концентрирование их здесь,

3) химическая модификация этих белков, а также связывание их с УВ или др. компонентами

4) их транспорт (внутри ЭПС и с помощью отдельных пузырьков).

Таким образом, наличие в клетке хорошо развитой гранулярной ЭПС свидетельствует о высокой интенсивности белкового синтеза - особенно в отношении секреторных белков.

Гладкая ЭПС в отличие от гранулярной лишена рибосом. Выполняет функции:

1)синтез углеводов, липидов, стероидных гормонов (поэтому она хорошо выражена в клетках синтезирующих эти гормоны н-р, в коре надпочечников, гонад);

2)дезинтоксикация ядовитых веществ (хорошо выражена в клетках печени, особенно после отравлений), депонирование ионов кальция в цистернах (в скелетной и сердечной мышечной ткани, после высвобождения стимулируют сокращение) и транспорт синтезированных веществ.

Комплекс Гольджи (впервые эту органеллу обнаружил Камилло Гольджи в 1898 г в виде зачерненной серебром сети) - это скопление 5-10 лежащих друг на друге плоских мембранных цистерн, от которых отшнуровываются мелкие пузырьки. Каждое такое скопление называется диктиосомой. В клетке может быть много диктиосом, соединённых с ЭПС и друг с другом цистернами и трубочками. По положению и функции, в диктиосомах различают 2 части: проксимальная (cis-) часть обращена к ЭПС. Противоположная часть называется дистальной (trans-). При этом к проксимальной части мигрируют пузырьки от гранулярной ЭПС, обрабатываемые" в диктиосоме белки постепенно перемещаются от проксимальной части к дистальной и, наконец, от дистальной части отпочковываются секреторные пузырьки и первичные лизосомы.


Функции комплекса Гольджи :

1) сегрегация (отделение) соответствующих белков от гиалоплазмы и концентрирование их,

2) продолжение химической модификации этих белков, н-р связывание с УВ.

3) сортировка данных белков на лизосомальные, мембранные и экспортные,

4)включение белков в состав соответствующих структур (лизосом, секреторных пузырьков, мембран).

Лизосомы (Дедюв в 1949 г.) - это мембранные пузырьки, содержащие ферменты гидролиза биополимеров, они образуются, отпочковываясь от цистерн комплекса Гольджи. Размеры - 0,2-0,5 мкм. Функция лизосом - внутриклеточное переваривание макромолекул. Причём, в лизосомах разрушаются как отдельные макромолекулы (белки, полисахориды и т.д.),
так и целые структуры - органеллы, микробные частицы и пр.

Различают 3 типа лизосом , которые представлены на электронограмме.

Первичные лизосомы - данные лизосомы имеют гомогенное содержимое.

Очевидно, это вновь образованные лизосомы с исходным раствором ферментов (около 50 различных гидролитических ферментов). Маркерный фермент - кислая фосфатаза.

Вторичные лизосомы образуются либо путём слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями,
либо путём захвата собственных макромолекул и органелл клетки. Поэтому вторичные лизосомы обычно больше по размеру первичных,
а их содержимое часто является неоднородным: например, в нём обнаруживаются плотные тельца. При наличии таковых говорят о фаголизосомах (гетерофагосомах) или аутофагосомах (если данные тельца - фрагменты собственных органелл клетки). При различных повреждениях клетки количество аутофагосом обычно возрастает.

Телолизосомы или остаточные (резидуальные) тельца , появляются тогда,

когда внутрилизосомальное переваривание не приводит к полному разрушению захваченных структур. При этом непереваренные остатки (фрагменты макромолекул, органелл и других частиц) уплотняются,
в них часто откладывается пигмент, а сама лизосома во многом теряет свою гидролитическую активность. В неделящихся клетках накопление телолизосом становится важным фактором старения. Так, с возрастом в клетках мозга, печени и в мышечных волокнах накапливаются телолизосомы с т.н. пигментом старения - липофусцином.

Пероксисомы видимо, как и лизосомы, образуются путём отшнуровывания мембранных пузырьков от цистерн комплекса Гольджи. Обнаруживаются в большом количестве в клетках печени. Однако пероксисомы содержат иной набор ферментов. В основном, это оксидазы аминокислот. Они катализируют прямое взаимодействие субстрата с кислородом причём, последний превращается в пероксид водорода, Н 2 О 2 - опасный для клетки окислитель.

Поэтому пероксисомы содержат и каталазу - фермент, разрушающий Н 2 О 2 до воды и кислорода. Иногда в пероксисомах обнаруживается кристаллоподобная структура (2) - нуклеоид.

Митохондрии - (в конце прошлого века Альтман избирательно окрасил их кислым фуксином) имеют две мембраны - наружную и внутреннюю - из которых вторая образует многочисленные впячивания (кристы ) в матрикс митохондрии. Митохондрии отличаются от прочих органелл ещё двумя интересными особенностями. Они содержат собственную ДНК - от 1 до 50 небольших одинаковых циклических молекул. Кроме того, митохондрии содержат собственные рибосомы , которые по размеру несколько меньше цитоплазматических рибосом и видны как мелкие гранулы. б) Данная система автономного синтеза белков обеспечивает образование примерно 5 % митохондриальных белков. Остальные белки митохондрий кодируются ядром и синтезируются цитоплазматическими рибосомами.

Главная функция митохондрий - завершение окислительного распада питательных веществ и образование за счёт выделяющейся при этом энергии АТФ - временного аккумулятора энергии в клетке.

2. Наиболее известны 2 процесса. –

а) Цикл Кребса - аэробное окисление веществ, конечными продуктами которого являются СО2, выходящий из клетки и НАДН - источник электроноа переносимых дыхательной цепью.

б) Окислительное фосфорилирование - образование АТФ в ходе переноса электронов (и протонов) на кислород.

Перенос электронов производится по цепи промежуточных переносчиков (т.н. дыхательной цепи), которая вмонтирована в кристы митохондрий.
Здесь же находится и система синтеза АТФ (АТФ-синтетаза, которая сопрягает окисление и фосфорилирование АДФ до АТФ). В результате сопряжения этих процессов, энергия, освобождаемая при окислении субстратов, хранится в макроэргических связях АТФ и в дальнейшем обеспечивает выполнение многочисленных функций клеток (н-р, мышечное сокращение). При заболеваниях в митохондриях происходит разобщение окисления и фосфорилирования, в результате энергия образуется в виде тепла.

в) Другие процессы, проходящие в митохондриях: синтез мочевины,
распад жирных кислот и пирувата до ацетил-КоА.

Вариабельность структуры митохондрий. В мышечных волокнах, где потребности в энергии особенно велики, митохондрии содержат
большое количество плотно расположенных пластинчатых (ламинарных) крист. В клетках печени количество крист в митохондриях значительно меньше. Наконец, в клетках коры надпочечников кристы имеют тубулярную структуру и выглядят на срезе как мелкие везикулы.

К немембранным органеллам относят:

Рибосомы - образуются в ядрышке ядра. В 1953 г. их обнаружил Паладе, в 1974 г. ему была присуждена нобелевская премия. Рибосомы состоят из малой и большой субъединиц, имеют размеры 25х20х20 нм, включают рибосомные РНК и рибосомные белки. Функция - синтез белка. Рибосомы могут либо располагаться на поверхности мембран гранулярной ЭПС, либо свободно располагаться в гиалоплазме, образуя скопления - полисомы. Если в клетке хорошо развита гр. ЭПС, то она синтезирует белки на экспорт (н-р, фибробласт), если в клетке слабо развита ЭПС и много свободных рибосом и полисом, то эта клетка малодифф-я и синтезирует белки для внутреннего употребления. Области цитоплазмы богатые рибосомами и гр. ЭПС дают + р-цию на РНК при окраске по Браше (РНК окрашив-ся пиронином в розовый цвет).

Филаменты - это фибриллярные структуры клетки. Существует 3 вида филаментов: 1) микрофиламенты - это тонкие нити, образованные глобулярным белком актином (диаметром 5-7 нм) образуют в клетках более или менее густую сеть. Как видно на снимке, основное направление пучков микрофиламентов (1) - вдоль длинной оси клетки. 2) второй тип филаментов называют миозиновыми филаментами (диаметр 10-25 нм) в мышечных клетках они тесно связаны с актиновыми филаментами, образуя мифибриллу. 3) филаменты третьего типа называются промежуточными их диаметр 7-10 нм. Не принимают непосредственного участия в механизмах сокращения, а могут влиять на форму клеток (скапливаясь в тех или иных местах и, образуя опору для органелл, часто собираются в пучки, образуя фибриллы). Промежуточные филаменты имеют тканеспецифическую природу. В эпителии они образованы белком кератином, в клетках соединительной ткани - виментином, в гладких мышечных клетках - десмином, в нервных клетках (приведённых на снимке) они называются нейрофиламентами и тоже образованы особым белком. По характеру белка, можно определить из какой ткани развилась опухоль (если в опухоли обнаружен кератин, то она имеет эпителиальную природу, если виметин - соединительнотканную).

Функции филаментов - 1) образуют цитоскелет 2) участвуют во внутриклеточном движении (перемещении митохондрий, рибосом, вакуолей, втягивание цитолеммы при фагоцитозе 3) участвуют в амебовидном движении клеток.

Микроворсинки - производные плазмолеммы клеток длиной около 1 мкм, диаметром около 100 нм, в их основе имеются пучки микрофиламентов. Функции : 1) увеличивают поверхность клеток 2) в кишечном и почечном эпителии выполняют функцию всасывания.

Микротрубочки тоже образуют в клетке густую сеть. Сеть
начинается от перинуклеарной области (от центриоли) и
радиально распространяется к плазмолемме. В том числе микротрубочки идут вдоль длинной оси отростков клеток.

Стенка микротрубочки состоит из одного слоя глобулярных субъединиц белка тубулина. На поперечном срезе - 13 таких субъединиц, образуют кольцо. В неделящейся (интерфазной) клетке создаваемая микротрубочками сеть играет роль цитоскелета, поддерживающего форму клетки, а также играют роль направительных структур при транспорте веществ. При этом транспорт веществ идёт не через микротрубочки, а по перитубулярному пространству. В делящихся же клетках сеть микротрубочек перестраивается и формирует т.н. веретено деления. Оно связывает хроматиды хромосом с центриолями и способствуют правильному расхождению хроматид к полюсам делящейся клетки.

Центриоли. Кроме цитоскелета, микротрубочки образуют центриоли.
Состав каждой из них отражается формулой: (9 х 3) + 0 . Центриоли располагаются парой - под прямым углом друг к другу. Такая структура называется диплосомой. Вокруг диплосом - т.н. центросфера, зона более светлой цитоплазмы в ней содержатся дополнительные микротрубочки. Вместе диплосома и центросфера называются клеточным центром. В неделящейся клетке - одна пара центриолей. Образование новых центриолей (при подготовке клетки к делению) происходит путём дупликации (удвоения): каждая центриоль выступает в качестве матрицы, перпендикулярно которой формируется (путём полимеризации тубулина) новая центриоль. Поэтому, как в ДНК, в каждой диплосоме одна центриоль является родительской, а вторая - дочерней.

Эндоплазматическая сеть (эндоплазматический ретикулум) была открыта К. Р. Портером в 1945 г.

Эта структура представляет собой систему взаимосвязанных вакуолей, плоских мембранных мешков или трубчатых образований, создающих мембранную трехмерную сеть внутри цитоплазмы. Эндоплазматическая сеть (ЭПС) встречается практически у всех эукариотов. Она связывает органеллы между собой и транспортирует питательные вещества. Различают две самостоятельные органеллы: гранулярную (зернистую) и гладкую незернистую (агранулярную) эндоплазматическую сеть.

Гранулярная (шероховатая, или зернистая) эндоплазматическая сеть . Представляет собой систему плоских, иногда расширенных цистерн, канальцев, транспортных пузырьков. Размер цистерн зависит от функциональной активности клеток, а ширина просвета может составлять от 20 нм до нескольких мкм. Если цистерна резко расширяется, то она становится заметной при световой микроскопии и ее идентифицируют как вакуоль.

Цистерны образованы двухслойной мембраной, на поверхности которой содержатся специфические рецепторные комплексы, обеспечивающие прикрепление к мембране рибосом, транслирующие полипептидные цепочки секреторных и лизосомальных белков, белков цитолеммы и др., то есть белков, не сливающихся с содержимым кариоплазмы и гиалоплазмы.

Пространство между мембранами заполнено однородным матриксом низкой электронной плотности. Снаружи мембраны покрыты рибосомами. Рибосомы при электронной микроскопии видны как мелкие (диаметром около 20 нм), темные, почти округлые частицы. Если их много, то это придает зернистый вид наружной поверхности мембраны, что и послужило основой для названия органеллы.

На мембранах рибосомы располагаются в виде скоплений - полисом, которые образуют разнообразные по форме розетки, гроздья или спирали. Такая особенность распределения рибосом объясняется тем, что они связаны с одной из иРНК, с которой считывают информацию, синтезируют полипептидные цепочки. Такие рибосомы прикрепляются к мембране ЭПС с помощью одного из участков большой субъединицы.

В некоторых клетках гранулярная эндоплазматическая сеть (гр. ЭПС) состоит из редких разрозненных цистерн, но может образовывать крупные локальные (очаговые) скопления. Слабо развита гр. ЭПС в малодифференцированных клетках или в клетках с низкой секрецией белков. Скопления гр. ЭПС находятся в клетках, активно синтезирующих секреторные белки. При повышении функциональной активности цистерны органеллы становятся множественными и нередко расширяются.

Гр. ЭПС хорошо развита в секреторных клетках поджелудочной железы, главных клетках желудка, в нейронах и др. В зависимости от типа клеток гр. ЭПС может распределяться диффузно или локализоваться в одном из полюсов клетки, при этом многочисленные рибосомы окрашивают данную зону базофильно. Например, в плазматических клетках (плазмоцитах) хорошо развитая гр. ЭПС обусловливает яркую базофильную окраску цитоплазмы и соответствует участкам концентрации рибонуклеиновых кислот. В нейронах органелла располагается в виде компактно лежащих параллельных цистерн, что при световой микроскопии проявляется в виде базофильной зернистости в цитоплазме (хроматофильное вещество цитоплазмы, или тигроид).

В большинстве случаев на гр. ЭПС синтезируются белки, которые не используются самой клеткой, а выделяются во внешнюю среду: белки экзокринных желез организма, гормоны, медиаторы (белковые вещества эндокринных желез и нейронов), белки межклеточного вещества (белки коллагеновых и эластических волокон, основного компонента межклеточного вещества). Белки, образуемые гр. ЭПС, входят также в состав лизосомальных гидролитических ферментных комплексов, располагающихся на внешней поверхности мембраны клетки. Синтезированный полипептид не толькко накапливается в полости ЭПС, но и перемещается, транспортируется по каналам и вакуолям от места синтеза в другие участки клетки. В первую очередь такой транспорт осуществляется в направлении комплекса Гольджи. При электронной микроскопии хорошее развитие ЭПС сопровождается параллельным увеличением (гипертрофией) комплекса Гольджи. Параллельно с ним усиливается развитие ядрышек, увеличивается число ядерных пор. Нередко в таких клетках имеются многочисленные секреторные включения (гранулы), содержащие секреторные белки, увеличивается число митохондрий.

Белки, накапливающиеся в полостях ЭПС, минуя гиалоплазму, чаще всего транспортируются в комплекс Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гр. ЭПС происходит модификация белков, связывание их с сахарами (первичное гликозилирование); конденсация синтезированных белков с образованием крупных агрегатов - секреторных гранул.

На рибосомах гр. ЭПС синтезируются мембранные интегральные белки, встраивающиеся в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны ЭПС и другие компоненты вакуолярной системы.

Основная функция гр. ЭПС - это синтез на рибосомах экспортируемых белков, изоляция от содержимого гиалоплазмы внутри мембранных полостей и транспорт этих белков в другие участки клетки, химическая модификация или локальная конденсация, а также синтез структурных компонентов клеточных мембран.

В процессе трансляции рибосомы прикрепляются к мембране гр. ЭПС в виде цепочки (полисомы). Возможность связаться с мембраной обеспечивают сигнальные участки, которые прикрепил ются к специальным рецепторам ЭПС - причальный белок. После этого рибосома связывается с белком, фиксирующим ее к мембране, а образующаяся полипептидная цепочка транспортируется через поры мембран, которые открываются при помощи рецепторов. В результате субъединицы белков оказываются в межмембранном пространстве гр. ЭПС. К образующимся полипептидам может присоединиться олигосахарид (гликозилирование), который отщепляется от долихол-фосфата, прикрепленного к внутренней поверхности мембраны. В последующем содержимое просвета канальцев и цистерн гр. ЭПС с помощью транспортных пузырьков переносится в цис-компартмент комплекса Гольджи, где подвергается дальнейшей трансформации.

Гладкая (агранулярная) ЭПС . Она может быть связана с гр. ЭПС переходной зоной, но, тем не менее, является самостоятельной органеллой с собственной системой рецепторных и ферментативных комплексов. Она состоит из сложной сети канальцев, плоских и расширенных цистерн и транспортных пузырьков, но если в гр. ЭПС преобладают цистерны, то в гладкой эндоплазматической сети (глад. ЭПС) больше канальцев диаметром около 50…100 нм.

К мембранам глад. ЭПС не прикрепляются рибосомы, что обусловлено отсутствием рецепторов к этим органеллам. Таким образом, глад. ЭПС хотя и является морфологическим продолжением гранулярной, не просто эндоплазматическая сеть, на которой в данный момент нет рибосом, а представляет собой самостоятельную органеллу, на которую рибосомы не могут прикрепиться.

Глад. ЭПС участвует в синтезе жиров, метаболизме гликогена, полисахаридов, стероидных гормонов и некоторых лекарственных веществ (в частности, барбитуратов). В глад. ЭПС проходят заключительные этапы синтеза всех липидов клеточных мембран. На мембранах глад. ЭПС находятся липидтрансформирующие ферменты - флиппазы, перемещающиеся молекулы жиров и поддерживающие асимметрию липидных слоев.

Глад. ЭПС хорошо развита в мышечных тканях, особенно поперечнополосатых. В скелетных и сердечных мышцах она формирует крупную специализированную структуру - саркоплазматический ретикулум, или L-систему.

Саркоплазматический ретикулум состоит из взаимно переходящих друг в друга сетей L-трубочек и краевых цистерн. Они оплетают специальные сократительные органеллы мышц - миофибриллы. В поперечнополосатых мышечных тканях органелла содержит белок - кальсеквестрин, связывающий до 50 ионов Са 2+ . В гладких мышечных клетках и немышечных клетках в межмембранном пространстве имеется белок кальретикулин, также связывающий Са 2+ .

Таким образом, глад. ЭПС является резервуаром ионов Са 2+ . В момент возбуждения клетки при деполяризации ее мембраны ионы кальция выводятся из ЭПС в гиалоплазму ведущий механизм, запускающий сокращение мышц. Это сопровождается сокращением клеток и мышечных волокон за счет взаимодействия актомиозиновых или актоминимиозиновых комплексов миофибрилл. В покое происходит обратное всасывание Са 2+ в просвет канальцев глад. ЭПС, что ведет к снижению содержания кальция в матриксе цитоплазмы и сопровождается расслаблением миофибрилл. Белки кальциевого насоса регулируют трансмембранный перенос ионов.

Повышение концентрации ионов Са 2+ в матриксе цитоплазмы также ускоряет секреторную активность немышечных клеток, стимулирует движение ресничек и жгутиков.

Глад. ЭПС дезактивирует различные вредные для организма вещества за счет их окисления с помощью ряда специальных ферментов, особенно в клетках печени. Так, при некоторых отравлениях в клетках печени появляются ацидофильные зоны (не содержащие РНК), сплошь заполненные гладким эндоплазматическим ретикулумом.

В коре надпочечников, в эндокринных клетках половых желез глад. ЭПС участвует в синтезе стероидных гормонов, и на ее мембранах находятся ключевые ферменты стероидогенеза. В таких эндокриноцитах глад. ЭПС имеет вид обильных канальцев, которые в поперечном сечении видны как многочисленные пузырьки.

Глад. ЭПС образуется из гр. ЭПС. В отдельных участках глад. ЭПС образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.

  • 5. Световой микроскоп, его основные характеристики. Фазово-контрастная, интерференционная и ультрафиолетовая микроскопия.
  • 6. Разрешающая способность микроскопа. Возможности световой микроскопии. Изучение фиксированных клеток.
  • 7. Методыавторадиографии, клеточных культур, дифференциального центрифугирования.
  • 8.Метод электронной микроскопии, многообразие его возможностей. Плазматическая мембрана, особенности строения и функций.
  • 9.Поверхностный аппарат клетки.
  • 11.Клеточная стенка растений. Строение и функции – оболочки клеток растений, животных и прокариот, сравнение.
  • 13. Органеллы цитоплазмы. Мембранные органоиды, их общая характеристика и классификация.
  • 14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.
  • 15. Комплекс Гольджи. Строение и функции.
  • 16. Лизасомы, функциональное многообразие, образование.
  • 17. Вакулярный аппарат растительных клеток, компоненты и особенности организации.
  • 18. Митохондрии. Строение и функции митохондрий клетки.
  • 19. Функции митохондрий клетки. Атф и его роль в клетке.
  • 20. Хлоропласты, ультраструктура, функции в связи с процессом фотосинтеза.
  • 21. Многообразие пластид, возможные пути их взаимопревращения.
  • 23. Цитоскелет. Строение, функции, особенности организации в связи с клеточным циклом.
  • 24. Роль метода иммуноцитохимии в изучение цитоскелета. Особенности организации цитоскелета в мышечных клетках.
  • 25. Ядро в клетках растений и животных, строение, функции, взаимосвязь ядра и цитоплазмы.
  • 26. Пространственная организация интрфазных хромосом внутри ядра, эухроматин, гетерохроматин.
  • 27. Химический состав хромосом: Днк и белки.
  • 28. Уникальные и повторяющиеся последовательности днк.
  • 29.Белки хромосом гистоны, негистоновые белки; их роль в хроматине и хромосомах.
  • 30. Виды рнк, их функции и образование в связи с активностью хроматина. Центральная догма клеточной биологии: днк-рнк-белок. Роль компонентов в ее реализации.
  • 32. Митотические хромосомы. Морфологическая организация и функции. Кариотип (на примере человека).
  • 33. Репродукция хромосом про- и эукариот, взаимосвязь с клеточным циклом.
  • 34. Политенные и хромосомы типа ламповых щеток. Строение,функции, отличие от метафазных хромосом.
  • 36. Ядрышко
  • 37. Ядерная оболочка строение,функции,роль ядра при взаимодействии с цитоплазмой.
  • 38.Клеточный цикл, периоды и фазы
  • 39. Митоз как основной тип деления.Открытый и закрытый митоз.
  • 39. Стадии митоза.
  • 40.Митоз,общие черты и отличия.Особенности митоза у растений и у животных:
  • 41.Мейоз значение, характеристика фаз, отличие от митоза.
  • 14. Эпс гранулярная и гладкая. Строение и особенности функционирования в клетках равного типа.

    Эндоплазматический ретикулум (ЭПС) - система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

    В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

    Шероховатая ЭПС. На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называетсяэргастоплазмой.

    Гладкая ЭПС. На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция.

    15. Комплекс Гольджи. Строение и функции.

    Комплекс Гольджи - это мембранная структура, присущая любой эукариотической клетке. Комплекс Гольджи состоит из уплощенных цистерн, как правило, собранных в стопки (диктиосомы). Цистерны не изолированы, а соединены между собой системой трубочек. Первую от ядра цистерну называют цис-полюсом комплекса Гольджи, а последнюю, соответственно, транс-полюсом. Количество цистерн в разных клетках разных организмов может варьировать, но в целом строение комплекса Гольджи у всех эукариот примерно одинаково. В секреторных клетках он развит особенно сильно. Функции комплекса Гольджи заключаются в переносе белков к месту назначения, а также их гликозилировании, дегликозилировании и модификации олигосахаридных цепочек.

    Комплексу Гольджи свойственна функциональная анизотропия. Новосинтезированные белки транспортируются из эндоплазматического ретикулума к цис-полюсу диктиосом с помощью везикул. Далее они постепенно продвигаются по направлению к транс-полюсу, подвергаясь поэтапным модификациям (по мере удаления от ядра состав ферментных систем в цистернах меняется). И, наконец, белки отправляются к своему окончательному месту назначения в везикулах, отпочковывающихся от транс-полюса. Комплекс Гольджи обеспечивает транспорт белков в три компартмента: к лизосомам (а также центральной вакуоли растительной клетки и сократительным вакуолям простейших), к клеточной мембране и в межклеточное пространство. Направление переноса белка определяется специальными гликозидными метками. Например, маркер лизосомальных ферментов - манноза-6-фосфат. Созревание и транспорт митохондриальных, ядерных и хлоропластных белков происходит без участия комплекса Гольджи: они синтезируются свободными рибосомами после чего попадают непосредственно в цитозоль. Важная функция комплекса Гольджи - синтез и модификация углеводного компонента гликопротеинов, протеогликанов и гликолипидов. В нем же синтезируются и многие полисахариды, например гемицеллюлоза и пектин у растений. Цистерны комплекса Гольджи содержат целый набор различных гликозилтрансфераз и гликозидаз. Также в них происходит сульфатирование углеводных остатков.

    Органеллы общего значения. Эндоплазматическая сеть.

    Органеллы – постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего и специального значения.

    Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы . Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

    Функции эндоплазматической сети:

    1.Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

    2.Гладкая ЭПС участвует в синтезе липидов, углеводов.

    3.Транспорт органических веществ в клетку (по каналам ЭПС).

    4.Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

    Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

    Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез трех типов белков:



    1.Мембранные белки . Все белки плазмолеммы, мембран самой ЭПС и большинство белков других органоидов являются продуктами рибосом ЭПС.

    2.Секреторные белки . Эти белки попадают в полость ЭПС, а затем путем экзоцитоза выводятся из клетки.

    3.Внутриорганоидные белки . Эти белки локализуются и функционируют в полостях мембранных органоидов: самой ЭПС, комплекс Гольджи, лизосом, митохондрий. ЭПС участвует в образовании биомембран.

    В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

    ЭПС является универсальным органоидом эукариотических клеток. Нарушение структуры и функции ЭПС приводит к серьезным последствиям. ЭПС является местом формирования мембранных пузырьков со специализированными функциями (пероксисомы).



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
    ПОДЕЛИТЬСЯ:
    Про деток, от рождения до школы